Specialized Clutches & Brakes

Powering Innovation
PT Tech has the stability of a large corporation and the flexibility of a small company.

Response
PT Tech appreciates its customer's needs for its technical information. Our customer service department includes three engineers and a designer. They can do more than just answer your technical questions. They know the produces well enough to understand what modifications can be made to suit a customer's unique needs.

Rebuild Capability
PT Tech's rebuild development lead time is two weeks when returned parts are available. With advance notice, lead time can be dramatically reduced.

Inventory
PT Tech strives to maintain service parts for its special designs as well as its standard product line. We stay in close touch with our customers so that we may anticipate service parts and requirements.

Engineering Support
PT Tech's employees are leading professionals in their fields. We have graduate engineers on staff with over 150+ years of experience designing industrial clutches and brakes. We have invested heavily in the latest research and design tools, including finite element analysis software, 3-D CAD software and multiple product test stands.

Extending Customer Communications
We know our customer's need for information and help is not limited to standard business hours. Customer service is available from 7am to 5pm. Company wide e-mail allows communication after hours. Our website contains product data sheets that include dimensional and performance information. In a service crisis, we offer a 24-hour Service Hotline: (330) 414-3172.

Professional Participation
PT Tech is active in supporting the technical societies that are associated with major markets. PT Tech has had active members on both the Electrical Committee and the Mechanical Committee of the AIST (Association of Iron and Steel Technology). We have co-chaired the Electrical Working Group that revised Technical Report #11 to include caliper and disc brakes. Also, PT Tech is an active member of SAE and ASM.

Employee Ownership and Commitment
In 1991 we became ESOP company and became 100% employee owned in 2008. This minimizes any problems associated with succession and assures long-term stability. Also, employee ownership allows the people you work with day-to-day to have the authority to make wide-ranging decisions, offering customers faster response times when critical actions are required.

Since 1978 PT Tech has served heavy industries' need for specialty clutches and brakes.

The 1980’s: In 1980, PT Tech developed the first TLC Torque Limiter for cutterhead used in underground mining machines. Today it’s the mining industry’s standard for protecting drive systems. During the mid-Eighties, PT Tech created a line of special hydraulic clutches for the cutter drives on tunnel boring machines. They were critical to the successful boring of many tunnels including the tunnel under the English Channel.

By 1986, the FMD multiple disc torque limiter series was introduced to work in high horsepower, high energy applications. Today, it is used on a wide variety of equipment around the world.

Professional Participation

PT Tech is committed to...
- Solving our customers’ problems with innovative designs
- Growth through continuous product development
- Keeping our focus on our core technology
- Providing our customer with exceptional service.

The 2000’s: The turn of the century meant continued growth in PT Tech’s product mix. Early in the new century, a line of fully “dry” HPTOs were developed, enabling applications onto lower HP engines. Along with this development was further advancement in the computer control of the dry and wet clutches. This has led to the evolution of direct communication between the engine and the clutch, allowing for unprecedented reliability.

PT Tech produced its first totally enclosed, wet hydraulic brake in 1987. It provides improved performance within the same dimensional envelope than the brake it replaced. At the end of the decade, PT Tech developed the CMD for applications involving high torque in a radially limited package. A typical application is a leveler in steel strip processing equipment.

The 1990’s: Beginning the decade, PT Tech evolved the LUT series torque limiters to work in diesel driven equipment. PT Tech launched the SLQ series in 1992. The SLQ is widely used in recycling, metal processing, moving and equipment. These units have become the gold standard for accurate torque control.

For more information on torque limiters, hydraulic brakes, caliper disc brakes applications, case histories... contact PT Tech.

By serving these diverse markets with key niche products, PT Tech has grown into a strong, stable company with a solid track record of success. Through continuing product development, our business has maintained a minimum 15% per year growth.

What this means to our customer is that we’re here to stay.
Diesel Engine Flywheel Effect

Electric motors and engines act like large flywheels. Typically, they represent 80-90% of the drive system’s total kinetic energy. This flywheel effect can produce inertia shockloads far above the rated torque when the driven equipment is abruptly stopped. Increasing productivity often mandates your equipment to be protected from shockloads without the loss of production caused by shear pin devices or releasable torque limiters.

A continuously engaged torque limiter, when properly applied, will provide excellent system protection. It sustains its torque setting through momentary shockloads thus avoiding nuisance releases. This is a major advantage in applications subject to frequent shockloads or when difficulty of resetting can disrupt production.

PT tech has been manufacturing sophisticated continuously engaged torque limiters for heavy industry since 1980. The torque setting of a PT Tech torque limiter is controlled by patented spring assemblies. The quantity and strength of the assemblies determine the torque setting. This prevents unauthorized personnel from changing the torque setting. PT Tech torque limiters do not require adjustments or lubrication throughout their life.

Preventing Damaging Shockloads

The following application stories highlight PT Tech’s products, technology, and problem solving capabilities in:

- Mining
- Road Working
- Tunnel Boring
- Diesel Engine
- Equipment Cranes

Roadworking Equipment

- Situation
While grinding through pavement, a reclaimer’s cutter drum frequently encounters objects that cause torque shockloads great enough to break shear pins.

- Problem
Frequent nuisance shear pin breakages lead to lost production that is costly to contractors.

- Solution
A UJT series torque limiter was positioned behind the transmission to absorb the torque shockloads. The torque setting was based on the transmission’s lowest gear ratio. When the cutterhead encountered an object that could cause a torque shockload, it slipped at a safe torque setting thus preventing damage and increasing production.

Performance Chart
Engine..CAT3406 Horsepower..........................405 HP Peak Engine Torque...........1,295 lb-ft Torque Setting...............4,200 lb-ft Torque Limiter........UJT335-500 Series

Continuous Miner

- Situation
When the cutterhead on a continuous miner comes to a sudden stop or encounters a momentary jam that abruptly causes a loss of cutter speed then quite often the cutterhead gearbox is damaged. The torque shockload occurs because the motor’s rotor acts like a flywheel. Its mechanical kinetic energy winds-up the drive system until something breaks.

- Problem
Many different devices and drive systems had been tried to prevent this damaging shock load. Torque shafts designed to break to prevent gearbox damage caused significant downtime. Also, over time the torque shaft will fatigue, thus lowering the torque at which it will break. Even the fastest current overload device did not work because they sense the increase in current draw after the shockload has occurred. Rubber couplings did not work because they could be provide enough wind-up to accommodate the shockload.

- Solution
The TLC torque limiter was designed to eliminate the shockload by absorbing the rotor’s kinetic energy and still maintain its torque setting throughout the slippage. Its patented design made the torque setting tamper resistant and eliminated problems due to worker misadjustment.

Performance Chart
Horsepower..........................250 HP Peak Engine Torque........1,500 lb-ft Torque Setting........2,300 lb-ft Torque Limiter........SL228 Series

Tunnel Boring Machine

- Situation
While tunneling in poor ground conditions, the TBM can become buried and jammed. Manually digging it free is costly and dangerous.

- Problem
Previous TBM clutches were ineffective at breaking the cutterhead loose and often burned-up in trying.

- Solution
PT Tech designed a hydraulically applied torque limiting clutch that can be disengaged to allow the motors to come up to speed without a load. The unit’s output inertia is very low and it has significant thermal capacity. This allows it to momentarily produce 300-500% of motor torque without shockload to free buried cutterhead.
Torque Limiters (cont.)

Tub Grinder

Situation
A tub grinder’s diesel engine turns a hammermill at engine speed to pulverize material. Designed to reduce wood, yard, and demolition waste, the equipment is subject to significant shockloads when foreign material is dropped into the tub.

Problem
The shockload can break universal joint causing it to fail. This can potentially cause costly damage to the equipment.

Solution
A UJT Series Torque Limiter is mounted between the universal joint and the hammermill. The torque setting is placed at 200% of the engine’s peak torque. This setting is below the mechanical clutch’s torque setting and well below the universal joint’s ultimate strength thus protecting both from the shockload.

Tire Shredder

Situation
A slow speed tire shredder is particularly prone to inertia shockloads due to the high reduction ratio in its gearbox.

Problem
The cutting drums in a shredder rotate towards each other. If metal falls into the shredder, it can be wedged between the drum causing a sudden stop. The motor and pulleys equivalent inertia at the cutting drums increases by the square of the gearbox ratio. This means even a small motor can have a devastating effect on the shredder.

Solution
The driven pulley is mounted onto the SLQ and the SLQ is mounted on the input of the gearbox. This isolates the motor/pulley inertia thus protecting the shredder during a jam.

Rolling Mill Main Drive

Situation
Electronic controls synchronize the recoiler’s arbor to the leading edge of the steel strip. The arbor must accelerate at a rate that allows the strip to be caught in the arbor’s slot but fast enough so that the strip does not deadhead in the slot.

Problem
If the steel strip deadheads in the arbor’s slot, the arbor will be subject to a sudden acceleration and the uncoiler will be subject to a like deceleration. This can cause inertial shockloads on the respective drive systems. The electronic controls cannot protect the drive system from inertial shockload because by the time they detect the problem, the inertial shockload has already caused drive system damage.

Solution
Place a FMD 561 Friction Limiter between the motor and spindle. When the impact occurs, the FMD 561 slips just long enough to absorb the shockload yet continues to transfer torque equal to the torque setting. Once the shockload passes, the FMD 561 stops slipping and the recoiler continues to do its job.

Metal Strip Leveling

Situation
The cutting drums in a leveler rotate towards each other. If metal falls into the leveler, it can be wedged between the drum causing a sudden stop. The motor and pulleys equivalent inertia at the cutting drums increases by the square of the gearbox ratio. This means even a small motor can have a devastating effect on the leveler.

Problem
If operating conditions cause one roll to experience a greater resistance than its opposing roll, it will draw a disproportionate amount of torque. This can cause gearbox and spindle breakage.

Solution
CMD torque limiters are placed on the output shafts of the gearbox. Their setting is below the ultimate strength of the spindles or the gearbox. When an unladen load is applied the CMD will slip allowing even power sharing among all the rolls.
CDB Brakes are designed to upgrade overhead cranes to the higher performance and ease of maintenance of a caliper disc brake. They conform to AIST Brakes Technical Report #11 (released August 1997). They operate either in series with DC motors or in a shunt circuit. Available in sizes to replace 8 to 23 inch drum brakes.

CDB Brakes

Ventilated Disc

When disc speed is more than 500 rpm, ventilated discs have significantly greater heat dissipation capability than solid discs. This can be critical in bridge brake applications. The entire kinetic energy of the crane must be handled by the brake if the operator does not plug (reverse) the motor. When operating at motor speed on an AC powered crane, the ventilated disc can have up to 300% more thermal dissipation capability than a solid disc.

Hoist and Trolley Brakes

- **Situation**
 Drum brakes have been the mainstay of the steel industry. They are susceptible to a number of problems including drum surface cracking due to thermal shock, fade due to heat, frequent adjustments due to drift and drag problems (expansion and contraction of the brake wheel), lengthy downtime due to brake pad replacement and expense involved in getting heavy brake shoes up onto the crane.

- **Problem**
 At the AIST Crane Symposium each year, crane brakes were consistently recognized as one of the biggest maintenance problems.

- **Solution**
 PT Tech’s CDB Caliper disc brakes meet the AIST brake standard published in 1997. They directly replace existing drum brakes. They have the same mounting hole pattern and the centerline of the disc matches the centerline of the drum so no modifications to the mounting holes are required. They can operate in series with DC motors or in DC shunt circuits. Discs are not susceptible to checking due to thermal shock. They also eliminate drift and drag problems. Their friction pucks are lightweight and replacement only takes five minutes. Most importantly, they were designed with maintenance people in mind. Adjusting for wear takes 15 seconds. CDB brakes are used on hoists and trolleys.

HCDB Series

The HCDB brake is a hydraulically applied bridge brake that directly replaces 10, 14, and 18” drum brakes. Installation requires no modification. Its compact design allows it to fit into the existing space. The HCDB is designed to operate with the existing pedal/master cylinder. It reduces maintenance because it compensates for friction material wear. The HCDB’s unique caliper accommodates misalignment and axial motor movement. Replacing the friction pucks is quick and easy. The caliper folds down exposing the pucks. The entire procedure takes 5 minutes.

Bridge Brakes

- **Situation**
 The drive is designed to slow the bridge by first using motor plugging and then using a hydraulic brake as the sole means of stopping the bridge. Also, operators have a tendency to use the brake pedal as a foot rest. This causes the brake to drag and dramatically heat the drum. In other cases, the duty cycle of the crane has changed over time. Its new rate of cycling is much higher than when originally designed. This means the brake must contend with a higher than expected amount of energy.

- **Problem**
 Bridge brakes are often abused for many different reasons. This leads to frequent and costly repairs.

- **Solution**
 Replace the drum brake with the largest ventilated HCDB disc brake that will fit into the existing installation. The ventilated disc increases the disc’s energy dissipation through convection by increasing its air flow volume.

HPTO Diesel Engine Clutches

- **Situation**
 A horizontal grinder’s engine drives a hammer mill through a set of belts. This harsh application applies a large load to the clutch output shaft while it reduces the size of waste materials.

- **Problem**
 Large overhung loads and shock loads can damage clutches, belts and even engines.

- **Solution**
 An HPTO, a Hydraulic Power Take-Off, provides a reliable solution to all the concerns. This microprocessor controlled, hydraulically applied wet clutch isolates these damaging loads from harming the engine and machine.

HPTO15FX

- Models rated up to 1,600 HP
- High belt-load capacity
- Auxiliary pump drives

HPTO12TS

- Up to 460 HP rating
- Self-adjusting
- Oil-Lubricated

Rock Crusher

- **Situation**
 Rock crushers use a high inertia impactor, cone or jaw crusher to crush rock. Getting these crushers engaged to the engine requires skilled operators.

- **Problem**
 Inexperienced operators can damage manual clutches while starting machine. The small pilot bearings have a short service life and transfer belt-load into the engine crankshaft.

- **Solution**
 The microprocessor controller monitors the engine during engagement to properly synchronize the engine and crusher thus automating the process. The design of the HPTO12 eliminates the problem pilot bearing and replaces it with a self-supported, lubricated bearing. The combination provides an unparalleled solution for the punishing application.

HPTO12TS

- SAE J1939 CAN Compatible
- Self-Diagnostic
- Prevents operator abuse of machine and clutch
- Robust design for Off-highway applications
Improving brake performance on underground

Over time, the concern for safety motivated underground vehicle builders to eliminate simple caliper disc brakes in favor of totally enclosed wet brakes. Totally enclosed brakes offer three distinct advantages to caliper disc brakes. First, the friction surface and operating mechanisms are not exposed to the environment. This reduces the maintenance problems that plague caliper disc brakes on underground vehicles. Second, they can provide significant braking force in a small package. Third, when the oil bath is circulated through a heat exchanger, a totally enclosed wet brake can have greater thermal capacity.

PT Tech has been manufacturing totally enclosed wet brakes since 1984. In most cases the equipment builder has a unique requirement that existing brakes cannot meet. The following application stories describe PT Tech’s solution to a number of equipment builder’s unique requirements:

Shuttle Cars

PT Tech’s brake is flange-mounted between the electric motor and the shuttle car’s gearbox.

Shuttle Car Downtime was considerable due to brake problems.

Caliper disc brakes were subject to frequent, maintenance problems due to contamination in coal mines.

Replace the dry caliper disc brake with a totally enclosed wet multiple disc brake. It is flange-mounted between an electric motor and a gearbox. The motor’s splined shaft mounts into the brake and the brake’s output shaft has a spline that fits into the gearbox. The brake is both a foot actuated service brake and a spring-applied parking emergency brake. It has greater thermal capacity and is far less susceptible to contamination problems than the dry caliper disc brake. Also, the brakes place the vehicle in compliance with International Mining regulations. Finally, a unique friction material wear indicator provides maintenance people with a means of knowing when service is required without having to rely on the operator’s complaints.

Continuous Miner Brakes

A domestic coal equipment builder had to replace its existing caliper disc brake with a totally enclosed wet brake in order to sell into several off-shore markets.

Many overseas markets are governed by guidelines that did not allow the use of dry caliper disc brakes on vehicles.

The existing axle fitting yoke is removed. A totally enclosed wet brake is mounted to the axle around the pinion shaft. There are different pinion shaft lengths. Three different adapter plates are available that bolt to the brake’s input hub. These adapter plates accept 8.5C, 9C, and 1810 drive shafts.

Solution

A domestic coal equipment builder had to replace its existing caliper disc brake with a totally enclosed wet brake in order to sell into several off-shore markets.

A domestic coal equipment builder had to replace its existing caliper disc brake with a totally enclosed wet brake in order to sell into several off-shore markets.

Replace the dry caliper disc brake with a totally enclosed wet multiple disc brake. It is flange-mounted between an electric motor and a gearbox. The motor’s splined shaft mounts into the brake and the brake’s output shaft has a spline that fits into the gearbox. The brake is both a foot actuated service brake and a spring-applied parking emergency brake. It has greater thermal capacity and is far less susceptible to contamination problems than the dry caliper disc brake. Also, the brakes place the vehicle in compliance with International Mining regulations. Finally, a unique friction material wear indicator provides maintenance people with a means of knowing when service is required without having to rely on the operator’s complaints.

Performance Chart

<table>
<thead>
<tr>
<th>Torque</th>
<th>6,250 lb-ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. Release Pressure</td>
<td>800 PSI</td>
</tr>
<tr>
<td>Normal Release Pressure</td>
<td>1,100 PSI</td>
</tr>
<tr>
<td>Max Release Pressure</td>
<td>3,000 PSI</td>
</tr>
<tr>
<td>Max Speed</td>
<td>3,000 RPM</td>
</tr>
</tbody>
</table>

Shield Hauler Brakes

The vehicle’s weight and speed are increasing. Also, the slope on which it will operate is increasing. In order to be compliant with mine safety requirements for stopping distance, additional braking torque is needed. The existing brake’s torque capability cannot be increased. Also, there is a need on existing vehicles that brakes must be retrofittable.

Problem

The existing brake is incorporated into the transmission. It does not have enough torque to properly stop the vehicle. The transmission cannot be modified to accept a larger brake.

Solution

A totally enclosed, spring applied, hydraulically released wet brake that mounts to a bulkhead was installed for additional braking capacity. It has wing bearing style fitting yokes on both the input and output to accept 7C driveshafts.

Performance Chart

<table>
<thead>
<tr>
<th>Torque</th>
<th>30,000 lb-ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Pressure</td>
<td>300 PSI</td>
</tr>
<tr>
<td>Max Pressure</td>
<td>500 PSI</td>
</tr>
<tr>
<td>Vehicle WT</td>
<td>140,000 lbs</td>
</tr>
<tr>
<td>Driveshaft Speed</td>
<td>2,200 RPM</td>
</tr>
</tbody>
</table>
Professional Service

Product Testing
PT Tech has approximately 2,000 square feet of plant space and a full-time graduate engineer and technicians dedicated solely to testing the products we manufacture.

Field Service
PT Tech has field service technicians frequently used to assist in initial installations. Also, we conduct maintenance seminars at our customer’s location and an in-house HPTO Training School for OEM’s.

Customer Service
PT Tech’s customer service department is standing by to assist you with all your powertrain needs.

We pride ourselves in exceptional service.

Rebuild Center
PT Tech provides rebuild services for all of its products. Whenever possible, wear parts are refurbished to minimize costs. All re-build units are covered by PT Tech’s one-year warranty.

Application Assistance
PT Tech has been analyzing and solving problems for heavy industry since 1980. Our application engineers regularly visit customer job sites to better appreciate the problems that plant engineers and maintenance people face when trying to solve drive system problems. In addition, PT Tech’s application engineers have two unique tools to assist you. First, our test stands can simulate the inertia shockload up to that of a 2000 HP motor. This allows us to better predict how a torque limiter will perform in your application. Second, using thousands of test results, PT Tech has developed a computerized selection program that quickly determines the best solution to your shockload problem.

Our facility is located 30 minutes south of Cleveland in Sharon Center, OH